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Abstract. We consider systems of r homogeneous diagonal equations of degree k in s variables, with integer

coefficients. Subject to a suitable non-singularity condition, it is shown that the expected asymptotic formula
holds for the number of such systems inside a box [−P, P ]s, provided only that s > (3r + 1)2k−2. By way

of comparison, classical methods based on the use of Hua’s lemma would establish a similar conclusion,
provided instead that s > r2k.

In the study of the number of solutions of additive equations of smaller degree, Hua’s lemma continues
to play a prominent role in establishing asymptotic formulae. A generalization of this lemma due to
Cook [2] provides a bound of similar strength for a system of equations, the number of variables required
increasing in proportion to the number of equations. In order to be precise, we introduce some notation.
Consider an r × rt integral matrix A = (aij) that contains t disjoint r × r non-singular submatrices.
With this matrix A we associate the linear forms

γj =
r∑

i=1

aijαi (1 6 j 6 rt).

Also, when k > 2 is an integer, we define the exponential sum

f(α) =
∑
|x|6P

e(αxk),

where e(z) denotes exp(2πiz). Cook’s lemma asserts that whenever t = 2l−1, with 1 6 l 6 k, then for
each positive number ε one has∫

[0,1]r
|f(γ1)f(γ2) . . . f(γrt)|2dα� P r(2l−l)+ε. (1)

When r = 1, the bound (1) is tantamount to Hua’s lemma (see Lemma 2.5 of Vaughan [8]). Moreover,
when the coefficient matrix A contains t disjoint r×r diagonal submatrices, then the integral on the left
hand side of (1) factorises into one dimensional mean values. Hence, in the absence of sharper estimates
for r = 1, and without further constraints on the coefficient matrix A, the estimate (1) is the best that
can be attained. The purpose of this note is to show that for most coefficient matrices, sharper bounds
are nonetheless accessible.

It is convenient to refer to an r × s matrix A that contains no singular r × r submatrix as being
highly non-singular. In the sense usually adopted in analytic number theory, it is apparent that almost
all coefficient matrices are highly non-singular. Also, when r, s ∈ N, we define the exponent Λ(s, r) to
be the least real number with the property that whenever A is a highly non-singular r× s matrix, then
for any positive number ε one has∫

[0,1]r
|f(γ1)f(γ2) . . . f(γs)|2dα� PΛ(s,r)+ε,

where the implicit constant depends at most on ε and A.
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Theorem. Let r and s be natural numbers with s > r. Then Λ(s, r) 6 M(s, r), where

M(s, r) =

{
s, when s 6 3r − 1,

2s− rk, when s > (3r + 1)2k−3,

and
M(s, r) = (2− 21−l)s− (l − 1

2 )r + 1
2 ,

when
2 6 l 6 k − 1 and max{3r − 1 , 2l−1r} < s 6 min{2lr , (3r + 1)2k−3}.

We note that the bound provided by our theorem is essentially dominated by the diagonal solutions
of the underlying diophantine system so long as s 6 3r− 1, whereas in Cook’s estimate (1), such is the
case only for s = rt 6 2r. Likewise, Cook’s lemma provides an essentially best possible upper bound
for s = rt > 2k−1r, whereas our estimate reaches this barrier already for s > 2k−3(3r + 1). When
k > 9 or thereabouts, Vinogradov’s methods may be applied to obtain estimates sharper than those
presented in our theorem (but Heath-Brown’s mean value estimate [5] lacks sufficient power to improve
our estimates for Λ(s, r) when r > 2).

We prove the theorem by induction on r with a subinduction on s. Observe first that when r = 1,
the statement of the theorem follows from Hua’s lemma via Hölder’s inequality. Also, when r ∈ N and
s 6 2r, the desired conclusion is contained in Cook’s lemma. Finally, on making a trivial estimate for
the implicit exponential sums, it is apparent that the conclusion of the theorem for s > (3r+ 1)2k−3 is
immediate from that when s = (3r + 1)2k−3.

In order to discuss the remaining cases, we introduce the numbers σ(l, r), which we define by

σ(l, r) =


2r, when l = 0,

3r − 1, when l = 1,

2lr, when 2 6 l 6 k − 2,

(3r + 1)2k−3, when l = k − 1.

Consider natural numbers r and s with 2r < s 6 (3r + 1)2k−3 and r > 2, and let A denote an
integral highly non-singular r × s matrix. We may suppose that Λ(s′, r′) 6 M(s′, r′) whenever r′ < r,
and likewise whenever r′ = r and s′ < s. We take l to be the unique natural number satisfying
σ(l − 1, r) < s 6 σ(l, r), and put

u = max{σ(l − 1, r) , s− 2l−1} and t = s− u.

Then by Hölder’s inequality, one has∫
[0,1]r

|f(γ1) . . . f(γs)|2dα 6 I1−t21−l

0

∏
u<j6s

I21−l

j , (2)

where

I0 =

∫
[0,1]r

|f(γ1) . . . f(γu)|2dα

and

Ij =

∫
[0,1]r

|f(γ1) . . . f(γu)|2|f(γj)|2
l

dα.

For each fixed j with u < j 6 s, by considering the underlying diophantine system and performing
the appropriate elementary row operations, one finds that the last integral is equal to∫

[0,1]r
|f(γ̃1) . . . f(γ̃u)|2|f(bαr)|2

l

dα, (3)

where γ̃m = γ̃m(α) is defined by

γ̃m =
r∑

i=1

ãimαi (1 6 m 6 u)
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and the integers ãim and the positive integer b arise from the row operations alluded to above. It is

therefore apparent that the matrix (Ã|b), where Ã = (ãim) and b = (0, . . . , 0, b)T , remains highly
non-singular. But, by Weyl differencing, one obtains

|f(bα)|2
l

� P 2l−1 + P 2l−l−1
∑

0<|h|6bk!(2P )k

che(αh), (4)

where the integers ch satisfy ch = O(|h|ε). On substituting (4) into (3), one finds that the mean value
(3) is bounded above by

P 2l−1+Λ(u,r)+ε + P 2l−l−1
∑

0<|h|6bk!(2P )k

chT (h),

where

T (h) =

∫
[0,1]r

|f(γ̃1) . . . f(γ̃u)|2e(αrh)dα.

On considering the underlying diophantine system, one finds that T (h) > 0 and that

∑
h

T (h) =

∫
[0,1]r−1

|f(γ̂1) . . . f(γ̂u)|2dα1 . . . dαr−1,

where γ̂m = γ̂m(α1, . . . , αr−1, 0) (1 6 m 6 u). But the matrix obtained from Ã by deleting the r-th
row is a highly non-singular (r − 1)× u matrix, and hence we deduce that∑

0<|h|6bk!(2P )k

chT (h)� PΛ(u,r−1)+2kε.

On noting that I0 � PΛ(u,r)+ε, we thus conclude from (2) that

Λ(s, r) 6 t21−l max{2l − 1 + Λ(u, r) , 2l − l − 1 + Λ(u, r − 1)}
+ (1− t21−l)Λ(u, r). (5)

In order to extract the desired conclusion from this last bound, it is useful to observe that in all
situations under consideration, one has M(u, r− 1) 6 M(u, r) + l. To verify this assertion, we note first
that when l = 1 one has u 6 σ(1, r)− 1 = 3r − 2, and further that M(u, r) = u and

M(u, r − 1) =

{
u, when u 6 3r − 4,
3
2u−

1
2 (3r − 4), when 3r − 4 < u 6 3r − 2.

Thus we find that when l = 1, one has

M(u, r − 1)−M(u, r) 6 max{0 , 1
2 (u− 3r + 4)} 6 1.

We observe next that for 2 6 l 6 k − 2, one has σ(l, r) − 2l−1 < σ(l + 1, r − 1). Then for the latter
values of l, one has u < σ(l + 1, r − 1). Consequently,

M(u, r) = (2− 21−l)u− (l − 1
2 )r + 1

2 ,

and

M(u, r − 1) =

{
(2− 21−l)u− (l − 1

2 )(r − 1) + 1
2 , when u 6 σ(l, r − 1),

(2− 2−l)u− (l + 1
2 )(r − 1) + 1

2 , when u > σ(l, r − 1),

whence
M(u, r − 1)−M(u, r) 6 max{l − 1

2 , 2−l(2lr − 2l−1) + l − r + 1
2} = l.

Finally, when l = k − 1, one finds that

M(u, r) 6 (2− 22−k)u− (k − 3
2 )r + 1

2 ,
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and

M(u, r − 1) =

{
(2− 22−k)u− (k − 3

2 )(r − 1) + 1
2 , when u 6 σ(k − 1, r − 1),

2u− (r − 1)k, when u > σ(k − 1, r − 1),

and hence

M(u, r − 1)−M(u, r) 6 max{k − 3
2 , 22−k((3r + 1)2k−3 − 2k−2) + k − 3

2r −
1
2}

= max{k − 3
2 , k − 1} = k − 1.

Equipped with the discussion of the previous paragraph, and making use of the inductive hypothesis,
we infer from (5) that

Λ(s, r) 6 t21−l max{2l − 1 + M(u, r), 2l − l − 1 + M(u, r − 1)}
+ (1− t21−l)M(u, r)

= 2t− t21−l + M(u, r) = M(s, r).

In view of our earlier comments, the conclusion of the theorem now follows by induction in all cases.

We finish this note by discussing an application of our theorem to the solubility of simultaneous
diagonal equations. Let r and s be natural numbers with s > (3r + 1)2k−2. Let N(P ) denote the
number of integral solutions of the system of equations

s∑
j=1

cijx
k
j = 0 (1 6 i 6 r) (6)

with |xj | 6 P (1 6 j 6 s), where (cij) is an r × s integral matrix with the property that the first
(3r+ 1)2k−3 columns form a highly non-singular submatrix, and likewise also the final (3r+ 1)2k−3 + 1
columns. Then, by standard methods originating in work of Davenport and Lewis [3,4] (a model for
the relevant argument may be found in Brüdern and Cook [1]), one may apply our theorem to show
that for large P one has

N(P ) = v∞

(∏
p

vp

)
P s−rk + o(P s−rk), (7)

where v∞ is the area of the manifold defined by (6) in the box [−1, 1]s, and

vp = lim
h→∞

ph(r−s)card{x ∈ (Z/phZ)s :
s∑

j=1

cijx
k
j ≡ 0 (mod ph) (1 6 i 6 r)}.

We note that when k = 3, the methods of this note permit the proof of the asymptotic formula (7)
whenever s > 6r + 3. Meanwhile, even the strongest speculative hypotheses concerning mean values of
cubic Weyl sums (Heath-Brown [6], Hooley [7]) provide such a conclusion only for s > 6r + 1. Indeed,
the sharpest conclusions available in the literature hitherto (see Brüdern and Cook [1]) establish (7) for
s > 8r and the lower bound N(P ) � (

∏
p vp)P s−rk for s > 7r, though with weaker conditions on the

coefficient matrix.
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